

Παραγωγή ανανεώσιμου ντίζελ μέσω αποξυγόνωσης υπολειμματικών λιπαρών πρώτων υλών παρουσία καταλυτών NiMo/SiO2

Ζαφειρόπουλος Ιωάννης, Φάνη Κωνσταντίνα, Κορδούλη Ελεάνα, Κορδούλης Χρήστος, Μπουρίκας Κυριάκος

Σχολή Θετικών Επιστημών και Τεχνολογίας, Ελληνικό Ανοικτό Πανεπιστήμιο, Πάτρα, Ελλάδα Τμήμα Χημείας, Πανεπιστήμιο Πατρών, Πάτρα

Κύκλος παραγωγής Βιοκαυσίμων

Εκλεκτική Αποξυγόνωση (SDO)

Επιθυμητά Χαρακτηριστικά Καταλυτών (SDO)

Υψηλή ειδική επιφάνεια για ομοιόμορφη διασπορά δραστικής φάσης Μέτρια οξύτητα για αποφυγή cracking και δημιουργία κωκ

NiMo/SiO2 Catalysts

Υψηλό ποσοστό δραστικής φάσης και υψηλή διασπορά αυτής για την επίτευξη μεγάλης δραστικής επιφάνειας

<u>ΣΤΟΧΟΣ</u>

Ανάπτυξη αποτελεσματικών διμεταλλικών καταλυτών νικελίουμολυβδαινίου στηριγμένων σε SiO₂ για την μετατροπή φρέσκων και χρησιμοποιημένων φυτικών ελαίων, σε **πράσινο-ανανεώσιμο diesel**.

ΠΛΑΝΟ

Αξιολόγηση καταλυτών στην μετατροπή φρέσκων και χρησιμοποιημένων φυτικών ελαίων

- 🔶 <u>Χαρακτηρισμός διμεταλλικών καταλυτών</u>

Σύνθεση καταλυτών με διαφορετικούς ατομικούς λόγους Ni/(Ni+Mo)

Εύρεση Συνεργιστικού Λόγου Ni – Mo στους Καταλύτες NiMo/SiO2 για τη διεργασία της εκλεκτικής αποξυγόνωσης

Σύνθεση καταλυτών xNiMoSi

Πρόδρομες Ενώσεις

Υγρός Εμποτισμός (WI) Σύνολο δραστικών φάσεων: 50% κ.β.

> Ni(en)₃(NO₃)₂ > (NH₄)₆ Mo₇O₂₄*4H₂O

Καταλύτες	Ni/(Ni+Mo)	% κ.β. Ni	% к.β. Мо	
0MoSi	0	0	50	
0.84NiMoSi	0.84	38	12	
0.91NiMoSi	0.91	43	7	
0.95NiMoSi	0.95	46	4	
0.98NiMoSi	0.98	48	2	
1NiSi	1	50	0	

> Μετά την εναπόθεση, ξήρανση για όλη τη νύχτα στους 120°C

Ηύρωση για 2 h στους 400°C

Χαρακτηρισμός καταλυτών NiMoSi

Θερμοπρογραμματισμένη εκρόφηση αμμωνίας (NH_3-TPD)

Θερμοπρογραμματισμένη αναγωγή με υδρογόνο (H₂-TPR)

Ρόφηση-εκρόφηση αζώτου σε θερμοκρασία υγρού αζώτου (BET)

> Θερμοσταθμική Ανάλυση (TGA)

Περίθλαση ακτίνων-Χ από σκόνη (XRD)

Αποτελέσματα Χαρακτηρισμού Καταλυτών NiMoSi

Κατανομή μεγέθους πόρων και χαρακτηριστικά υφής των καταλυτών

Οι NiMoSi καταλύτες εμφανίζουν μια μονοκόρυφη κατανομή πόρων, με κέντρο τα ~70 nm και παρόμοιες ειδικές επιφάνειες

Παρόμοια συμπεριφορά των διμεταλλικών καταλυτών με αυτή του μονομεταλλικού καταλύτη 1NiSi με ελαφριά μετατόπιση των πόρων σε μικρότερες τιμές.

≻Ο 0MoSi εμφανίζει χαμηλή ειδική επιφάνεια.

Καταλύτης	SSA (m²/g _{καταλύτη})	SSA (m²/g _{φορέα})	Ειδικός όγκος πόρων (cm³/g)	Μέση διάμετρος πόρων (nm)
SiO ₂	192	192	0.97	21.6
0MoSi	77	154	0.54	27.5
0.84NiMoSi	125	250	0.60	17.9
0.91NiMoSi	126	252	0.68	19.5
0.95NiMoSi	129	258	0.64	19.1
0.98NiMoSi	128	256	0.76	22.3
1NiSi	124	248	0.72	22.1

Αποτελέσματα Χαρακτηρισμού Καταλυτών NiMoSi

Καταλύτης	Μέσο μέγεθος κρυσταλλιτών Ni ⁰ (nm)
1NiSi	11.7
0.98NiMoSi	7.1
0.95NiMoSi	5.4
0.91NiMoSi	5.8
0.84NiMoSi	5.7
0MoSi	-

Στους NiMoSi και στον 1NiSi η κυρίαρχη φάση το Ni⁰. Ανιχνεύεται και NiO

Η προσθήκη του Μο φαίνεται ότι δρα ευεργετικά στη διασπορά του νικελίου μειώνοντας το μέσο μέγεθος του Ni⁰

Στον 0MoSi εμφάνιση κύριων κορυφών του MoO₂. Αναγωγή του Mo⁶⁺ σε Mo⁴⁺

Στους NiMoSi δεν παρατηρούνται κορυφές του MoO₂ λόγω του μικρού ποσοστού ή της καλής διασποράς του.

Αποτελέσματα Χαρακτηρισμού Καταλυτών NiMoSi

Θερμοπρογραμματισμένη αναγωγή με υδρογόνο (H₂-TPR)

≻ Δύο κύριες κορυφές αναγωγής στους 560°C και 850°C για τον 0MoSi (αναγωγή Mo⁶⁺→Mo⁴⁺→Mo⁰).

➢Μετατόπιση της κύριας κορυφής αναγωγής του NiO στους διμεταλλικούς από τους τους 310°C στους 360°C, αυξανομένου του Mo. Άρα το Mo ενισχύει την διασπορά του NiO, με αποτέλεσμα τα νανοσωματίδια του NiO να ανάγονται σε υψηλότερες θερμοκρασίες.

Συμφωνία με τα αποτελέσματα XRD

Θερμοπρογραμματισμένη εκρόφηση αμμωνίας (NH₃-TPD)

- Κορυφές σε θερμοκρασίες από 120 °C έως 350 °C , αφορούν όξινες θέσεις ασθενής και μέτριας ισχύος.
- Η προσθήκη Μο ενισχύει την συνολική οξύτητα των καταλυτών αλλά όχι τις ισχυρά όξινες θέσεις και την γενικότερη κατανομή τους.
- Ο καταλύτης 0.84NiMoSi εμφανίζει υψηλή συγκέντρωση ασθενών όξινων θέσεων οι οποίες προσομοιώνουν την εικόνα του μονομεταλλικού καταλύτη 0MoSi.

Αξιολόγηση καταλυτών NiMoSi

Αντιδραστήρας ημιδιαλείποντος έργου

Συνθήκες αντίδρασης

- Μάζα καταλύτη: 1 g
- Όγκος ελαίου: 100 ml
- Θερμοκρασία: 310 °C
- > Πίεση: 40 bar
- > Παροχή H₂: 100 ml/min
- Χρόνος αντίδρασης: 9 h

Η ανάλυση των αέριων προϊόντων της αντίδρασης έγινε σε αέριο χρωματογράφο GC-TCD. Η ανάλυση των υγρών προϊόντων της αντίδρασης έγινε σε αέριο χρωματογράφο φασματογράφο μάζας (GC-FID/MS)

Αποτελέσματα Αξιολόγησης καταλυτών NiMoSi

Προϊόντα υγρής φάσης

Ουσίες	Συμβολισμός	Ουσίες	Συμβολισμός	
Επτάνιο	1	1-δεκαοκτανόλη	7	
Δεκαπεντάνιο	2	Στεατικό οξύ	8	
Δεκαεξάνιο	3	Μεθυλεστέρας στεατικού	9	
Δεκαεπτάνιο	4	Προπυλεστέρας στεατικού	10	
Δεκαοκτάνιο	5	Εστέρες υψηλού μοριακού βάρους	11,12,13,14	
Παλμιτικό οξύ	6	Τριγλυκερίδια	15	

Αποτελέσματα Αξιολόγησης καταλυτών NiMoSi

Απόδοση ηλιέλαιου σε υδρογονάνθρακες στο υγρό προϊόν, παρουσία των καταλυτών xNiMoSi μετά από 9h αντίδρασης

Με αύξηση του ποσοστού του Μο εμφανίζεται μια πολύ μεγάλη αύξηση της απόδοσης σε HC

➤ Η μέγιστη απόδοση σε HC (98%) εμφανίζεται στον καταλύτη NiMoSi με λόγο Ni/(Ni+Mo)= 0.95

Περεταίρω αύξηση της προσθήκης Mo οδηγεί σε μείωση της απόδοσης ως προς την παραγωγή HC

Η προσθήκη μόλις 4% κ.β. Μο στον νικελικό καταλύτη αυξάνει εντυπωσιακά την απόδοσή του σε υδρογονάνθρακες από το 66% στο 98%, αναδεικνύοντας έτσι τη συνεργιστική δράση των δύο μετάλλων

Αποτελέσματα Αξιολόγησης καταλυτών NiMoSi

Αποδόσεις καταλυτών σε ΗC C₁₇ και C₁₈ μετά από 9h αντίδρασης

Οι NiMoSi παρουσιάζουν μια εκλεκτικότητα στην παραγωγή του C₁₇. Η SDO του εμπορικού ηλιέλαιου οδεύει κυρίως μέσω deCOx και λιγότερο μέσω HDO.

> Η προσθήκη του Μο ενισχύει την παραγωγή του C_{18} έναντι του C_{17} . Ο 0.84NiMoSi παρουσιάζει το υψηλότερο ποσοστό σε C_{18} . Συνεπώς η προσθήκη Μο ευνοεί το μονοπάτι της HDO.

Η ενισχυτική δράση του Μο

- 1º Στάδιο: Προσρόφηση λιπαρού οξέος στα είδη του MoO_χ και ενεργοποίηση της καρβοξυλομάδας από τις κενές θέσεις οξυγόνου του MoO_χ
- 2º Στάδιο: Δημιουργία υδριδίου Η⁻ και πρωτονίου Η⁺
- 3° Στάδιο: Το υδρίδιο προσβάλλει το προσροφημένο οξύ προς παραγωγή αλδεΰδης.
- 4º Στάδιο: Το υδρίδιο προσβάλλει την αλδεΰδη προς παραγωγή αλκόολης (1δεκαοκτανόλη)
- 5º Στάδιο: Η 1-δεκαοκτανόλη αφυδατώνεται προς αλκάνιο C18 μέσω της διεργασίας της (HDO)

Προτεινόμενος μηχανισμός εκλεκτικής αποξυγόνωσης των λιπαρών οξέων για καταλύτες NiMo/SiO $_2$

Cao, X. et al. Renewable Energy, 162 (2020) 2113-2125.

Σύγκριση φρέσκου και χρησιμοποιημένου καταλύτη 0.95NiMoSi

Εναπόθεση κωκ ίση με 5% σε σχέση με 15% του spent 1NiSi. Δράση του Μο στην εμπόδιση δημιουργίας ανθρακούχων ενώσεων στην επιφάνεια του καταλύτη ευνοώντας την HDO έναντι της deCO_x.

---- Συγκριτική αξιολόγηση υπολειμματικών λιπαρών πρώτων υλών στην παραγωγή πράσινου ντίζελ

Green Diesel από Υπολειμματική Λιπαρή Πρώτη Ύλη

Αποτελέσματα Χαρακτηρισμού Πρώτης Ύλης

	Τριγλυκεριδική Πρώτη Ύλη						
Φυσικοχημικά χαρακτηριστικά	SFO	WCO	FAD	СНО	SCGO		
Υγρασία (%)	0.04	0.14	0.2	0.1	(3.5)		
Αριθμός Σαπωνοποίησης	213	207	189	198	266		
Βαθμός οξύτητας (ελαϊκό οξύ)(%)	0.08	3.7	(80.4)	0.3	5.04		
Αριθμός Ιωδίου (Wijs)	131	85	122	77	66		
Κινηματικό ιξώδες (60ºC)(cSt)	31.3	39.1	24	30	(350)		

- Υψηλό ποσοστό υγρασίας για το SCGO
- Πολύ υψηλή οξύτητα για τα FAD
- Πολύ υψηλό κινηματικό ιξώδες για το SCGO

Αποτελέσματα Χαρακτηρισμού Πρώτης Ύλης

Χρωματογραφήματα των υπολειμματικών πρώτων υλών και του εμπορικού ηλιέλαιου.

- FAD Eλεύθερα λιπαρά οξέα
- SCGO Eμφάνιση κορυφής καφεΐνης

Αξιολόγηση υπολειμματικών λιπαρών πρώτων υλών

Αντιδραστήρας ημιδιαλείποντος έργου

0.95NiMoSi

 $+H_2$

Συνθήκες αντίδρασης

- Μάζα καταλύτη: 1 g
- Όγκος ελαίου: 100 ml
- Θερμοκρασία: 310 °C
- > Πίεση: 40 bar
- > Παροχή H₂: 100 ml/min
- Χρόνος αντίδρασης: 9 h

Η ανάλυση των αέριων προϊόντων της αντίδρασης έγινε σε αέριο χρωματογράφο GC-TCD. Η ανάλυση των υγρών προϊόντων της αντίδρασης έγινε σε αέριο χρωματογράφο φασματογράφο μάζας (GC-FID/MS)

Αποτελέσματα αξιολόγησης υπολειμματικών λιπαρών πρώτων υλών

Εκατοστιαίες μετατροπές και αποδόσεις σε υδρογονάνθρακες στην περιοχή του diesel (C_{15} - C_{18}) των λιπαρών πρώτων υλών μετά από την 9^{η} ώρα της αντίδρασης παρουσία καταλύτη 0.95NiMoSi

> Και οι τέσσερις πρώτες ύλες παρουσίασαν μια πλήρη μετατροπή μετά από 9 ώρες αντίδρασης.

>Η απόδοση σε υδρογονάνθρακες στην περιοχή του diesel (C_{15} - C_{18}) για τις πρώτες ύλες του WCO, CHO και FAD είναι πολύ υψηλή (67-92%), ενώ για το SCGO είναι ίση με 16%

Αποτελέσματα αξιολόγησης υπολειμματικών λιπαρών πρώτων υλών

Ο κύριος υδρογονάνθρακας και στις τέσσερις πρώτες ύλες είναι το δεκαεπτάνιο (C₁₇), ένδειξη ότι η αντίδραση της SDO προς πράσινο diesel οδεύει κυρίως μέσω της deCOx και λιγότερο μέσω της HDO

Στο CHO όπως και στο SCGO έχουμε υψηλή απόδοση και σε C₁₅ εξαιτίας της υψηλής περιεκτικότητας σε παλμιτικό οξύ (C16:0)

Διερεύνηση παραγόντων που επηρεάζουν τη χαμηλή απόδοση σε HC του SCGO

Εκατοστιαίες μετατροπές και αποδόσεις σε ΗC της επεξεργασμένης πρώτης ύλης του SCGO μετά από 9 ώρες αντίδρασης

H₃C_N N CH₃ Καφεΐ

Νερό

Το υψηλό ποσοστό υγρασίας και η παρουσία καφεΐνης στην πρώτη ύλη επηρεάζουν αρνητικά την απόδοση σε HC

SCGO(deCAF+deH_O)

		Σύσταση Υγρού (% κ.β.)						
Πρώτη Ύλη	Μετατροπή %	Οξέα	Εστέρες	HC	C15	C16	C17	C18
SCGO (FRESH) ^a	97	22	61	16	3	2	8	3
SCGO (deH ₂ O) ^b	100	6	62.3	32.7	9.8	2	17.7	3.2
SCGO (deCAF+deH ₂ O) ^c	100	0.8	8.5	90.7	29.5	2.5	55	4

Συμπεράσματα

- Ο υγρός εμποτισμός (W.I.) με χρήση της πρόδρομης ένωσης Ni(en)₃(NO₃)₂ αποδείχθηκε μία πολύ καλή τεχνική σύνθεσης. Η συγκεκριμένη τεχνική οδηγεί σε καταλύτες μέτριας οξύτητας, με υψηλό πορώδες και πολύ καλή διασπορά του Ni.
- Η προσθήκη Mo στους καταλύτες Ni/SiO₂ αυξάνει σημαντικά την αποτελεσματικότητα του καταλύτη, εμφανίζοντας συνέργεια με το Ni. Ο βέλτιστος συνεργιστικός λόγος Ni/(Ni+Mo) βρέθηκε ίσος με 0.95. Ο συγκεκριμένος καταλύτης εμφάνισε την υψηλότερη δραστικότητα και την υψηλότερη εκλεκτικότητα σε παραγόμενους υδρογονάνθρακες (98%) στην περιοχή του diesel (C₁₅-C₁₈).
- Η διεργασία της SDO τόσο του εμπορικού ηλιέλαιου όσο και των υπολειμματικών λιπαρών πρώτων υλών, παρουσία καταλύτη Ni/SiO₂, οδεύει κυρίως μέσω των μονοπατιών της αποκαρβοξυλίωσης ή/και της αποκαρβονυλίωσης (deCOx) και πολύ λιγότερο μέσω της υδρογονοαποξυγόνωσης (HDO). Η προσθήκη Μο στους καταλύτες αυξάνει τη συνεισφορά της HDO.
- Η σειρά απόδοσης σε υδρογονάνθρακες (% κ.β.) στην περιοχή του ντίζελ από τις υπολειμματικές πρώτες ύλες είναι η εξής: CHO 92%, WCO 90%, FAD 68% και SCGO 16%.